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of lines of widths W, and W, respectively, and Cu and Cy, are the
capacitances per unit length of the infinite (two-dimensional) lines of
widths W,, and Wy. The two conjoining lines of lengths L create the
region investigated, which has a total capacitance C.(L).

In light of lengths I, and —Iy calculated in the previous section,
a corrected form of (6), accounting for the effects of inductance,
is now

AC = Jim [CUL) = Caol) = Cee2) = Co(L + ) = CunlL = 1) ] ()

REsuLTS

The equivalent lengths /, and —Ix, in normalized form, associ-
ated with a range of aspect ratios W /Wy, are shown in Fig. 3 for a
constant ratio of Wx/H =1.0, H being the strip-ground plane spac-
ing, which was taken to be 0.025 in. These results supply the neces-
sary information to establish a reference plane for the junction.

The results of Fig. 3 were then applied to (7), giving the correc-
tions required of the capacitance values attained by Farrar and

" Adams, and these are given in Fig. 4, where their results can be seen
to concur well for only a limited aspect ratio.

Of particular interest is the outcome of the comparison of com-
puted results, in the case ¢ =1.0, for both (6) and (7), which indi-
cates (within the numerical error limits) the dualities involved. This
case of an absence of dielectric can be accounted for by the effect of
series inductance or shunt susceptance on uniform transmission-line
behavior, and one would suspect that the definition of an electrical
reference plane for the junction would correspondingly produce the
same answer. If, in the electrostatic case, the excess and deficiency
of charge or capacitance on either side of reference plane 7-7 had
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been furnished, then for ¢ =1.0, lengths I, and —I» could be dis-
cerned, and thus not only provide the reference plane required, but
also make available self-correcting measures for the final calculation
of capacitance, therefore producing a more representative equivalent.
In conclusion, extended information on the parameters associated
with an impedance step have been presented, accounting for both
inductance and capacitance, using static assumptions. The interpre-
tation of dualities has enabled comparisons to be made with other
theoretical work; these have proven to be extremely good. Further-
more, inferences may be drawn as to the complete adequacy of an
exclusively electrostatic approach in the present application.
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Discontinuity Capacitance of a Coaxial Line Terminated
in a Circular Waveguide : Part II—Lower Bound Solution

EDWARD W. RISLEY, JR.

Abstract—This calculation provides a lower bound (complement-
ing the upper bound solution given earlier) to the discontinuity
capacitance of a coaxial line terminated in a circular waveguide. A
50-Q 0.9525-cm (3/4-in) open-circuited coaxial termination with a
solid center conductor was fabricated with center- and outer-con-
ductor diameters of 0.82723 +0.00005 and 1.90487 4 0.00005 cm
(1 cm=0.393703 in), respectively. The measured value of capaci-
tance of this termination at 1000 Hz was 216.4 + 1.0 fF, as compared
with the calculated lower bound of 215.0 fF. (The upper bound for
this case was 217.7 fF.).

I. INTRODUCTION

The standard of reflection for a coaxial line is the quarter-wave
short-circuit termination. There are, however, shortcomings to this
standard: the fabrication cost is high and each termination is usable
at only one frequency. However, an open-circuited coaxial line with
an extended outer conductor and a solid inner conductor could be
used advantageously as a standard termination, because fabrication
can be made using commercially available components and because
the device is broad banded and losses are minimal. In addition to the
high-frequency application, the device can also be used at low fre-
quencies as a standard of capacitance.

In this short paper, the input impedance Z is formulated in terms
of the magnetic field which leads to a lower bound solution for the
discontinuity capacitance. Z is expressed as a stationary functional
with a definite integral operator, and can therefore be shown to be
bounded on the set of admissible trial functions {1].

This result complements the upper bound solution given in an
earlier paper [2].

II. INTEGRAL EQUATION FOR INPUT IMPEDANCE

To derive the stationary form for the input impedance, assume
an incident T wave propagating in the direction of increasing s
(Fig. 1). Symmetry dictates that only E modes, independent of ¢,
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Fig. 1. Coaxial line terminated in a circular waveguide.

will be generated by the discontinuity at z=0. The modal expansions
for the transverse components of the field in region I for 0<p <a are

By = ao(e™* + Re*)po(p) + 2. dnda(p)e e M
n=}
Hi = ao(e — Re ™) yopo(p) — 2 @nYun(p)e"m? @
n=1

see [2] for a glossary of symbols, where the generalized Fourier
coefficients are

1
————————— A 4 3
yokz(g'ulcz — Retkz ) 1% ( )
ethyz
@y = — H1¢J a4 (4)
yih;? 4,

with ¢o(p) and ¢.(p) defined to be zero on [0, &].
Similarly, the transverse fields in region 11 for 0<p<a are

En = 2 bupn(p)erhn's (5)
n=1
Hy = Z bnyn’wn(l’)eih"'z (6)
n=1
where
b= = T mgda ™
T yj h’z 4, H‘l/j

and it is assumed that all modes in this region are evanescent. To
insure that this condition is satisfied, it is sufficient that the wave-
length Ar of the incident mode satisfies the inequality A1 >2ma/ Ui,
where U, is the first zero of the equation Jo(v1'a) =0.

Replace the coefficients in (1) and (5) by their integral expressions
(3), 4), and (7); then

(etkz + Re—lkz f
E — HeodA + K1H
1 y0k2(e”" “Reh) — ¢o(p) 190d4 + Ki1Hr ®
By = — KIIHII 9

where K1 and Ky are the integral operators:

Ky = fo% [ 1m0 avds (10)
KnHy = fozrfoaks(p. PV Hn(p")p dp'de (11)
with kernels
kip, p') = Ew: (el o) (12)
wmt Yalty?
o, ) = 3, o) (13)

1, 1
n=1 Y }In 2

which are separable, and therefore the integral transformations are
completely continuous.
Continuity of transverse E across z=0 in .{; requires

Zoo(p) fA (o) d4 + [ kie, )0 44

= - ka(p, p"YHu(p") d4,
4,

p €4 (14
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where
1+ R

yok*(1 — R)

Equation (14) contains implicitly the vanishing of tangential £ on 4s.
Since Hy=Hy on A, (14) can be rewritten as

Zoolo) fA oo Hr (o) dd + fA ko, o) Hun(s') 4

= -—f kalp, p")Hur(p") 44
As
or
Zoolp) (o, Hu) + kH1r = 0 (15)
where
Kt = [ ko, o) Hn(s") a4 (16)
A2
and
- n n ! n ﬂ( !
o o) = 3 34) (0)o 2(p) ¥ (p),lﬁlp)é . an
=t Ynltn Yo' lta'?
It follows from (15) that
Z(H, p)* + (H,KH) =0
or
(H,KH)
=— = 18
, oo 18)

where K is a definite symmetric operator, and hence (18) is a sta-
tionary form which is bounded.

III. REDUCTION OF THE VARIATIONAL EXPRESSION

Since (18) is exact only if H is the actual field, expand H in the
complete set {¥.(0)}:

H= ;Nlbiyl'\ﬁ,(p). (19)
Equation (18) plus stationarity leads to the system
ib,y{(zmm +%)=0, k=1,2---,N. (20)
Equation (20) can be solved for Z to give
Zk——w-Ai———r k=12..-- N (21)

ZQA,k

i=1

where, for example, the determinants in (21) for k=3 are

Ap = | Qap Q22 Qs

Agp =

I
g2
S
2

Az = | Q21 Q2 Qe

The determinant elements are defined in terms of the inner products

B = (0 ) (22)
2, =83 {(—‘”"»“%@ﬂﬂ + B’ s (23)
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where
s 31, t=n=j
™ 0, otherwise.

IV. RESULTS

Equation (21) was evaluated using an electronic computer. A
50-Q 0.9525-cm (3/4-in) open-circuited coaxial termination with a
solid center conductor was fabricated with center- and outer-con-
ductor diameters of 0.82723 £0.00005 and 1.90487 +0.00005 cm
(1 cm =0.393701 in), respectively. The measured value of capacitance
of this termination at 1000 Hz was 216.4 + 1.0 {F, as compared with
the calculated lower bound of 215.0 fF. [The upper bound for this
case was 217.7 {F (see 2).] The number of terms carried in the expan-
sions for H and k(p, p’) were eight and ten, respectively.

Fig. 2 is a plot of the calculated value of capacitance as a function
of the number of terms carried in the expansion of the field [see (19)]
for a ten-term expansion of the kernel [see (17)]. Also displayed is the
convergence behavior of the upper bound solution.

The error bounds provided by this method make it useable for
standards work. In other methods, error bounds must be inferred
from the convergence behavior of the solution. The minimum error
bounds determinable by this method must wait until funds become
available. In theory, of course, this limit could be reduced to zero.

Somio [3] obtained a value of 216.8 fF using a 40-term expansion
of the series derived by Whinnery et al. {4]. This value lies between
the upper and lower bounds obtained here.

V. NOMENCLATURE

Al, Az, ‘43 See Flg 1.

E Radial component of transverse electric field.

H Transverse component of magnetic field.

R Reflection coefficient.

o Amplitude of the incident wave in region 1.

hn =VEE— vt =tom; an =V vaE—k%

B! =Vk? _’Yn’2 =1ay'; an’ = \/'Ynlz —k2

k =wV ue.

Yn =we/h,—wave admittance corresponding to the nth
mode in the region Z <0.

' =we/h,’—wave admittance corresponding to the nth
mode in the region Z >0.

Yo Characteristic admittance.

¥nlp) Mode function of the #th mode in a circular waveguide.

Y nth eigenvalue corresponding to the eigenfunction
®,{p) (see I).
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Yn nth eigenvalue corresponding to the eigenfunction ¥,
(see I).

€ Dielectric constant.

p Polar coordinate.

u Permeability.

@ Polar coordinate.

@o(p) Mode function of the dominant mode in a coaxial line.
¢n(p) Mode function of the #th mode in a coaxial line.
w =2xf; f =frequency.
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On Inhomogeneously Filled Rectangular Waveguides

K. F. CASEY

Abstract—A method is given for determining the characteristic
equations and field components of the LSE and LSM modes in
rectangular waveguides filled with a dielectric which is inhomoge-
neous in one transverse dimension. The method is exact and yields
solutions for a nearly arbitrary variation in permittivity across the
waveguide. .

Propagation in waveguides which are inhomogeneously filled in
the transverse direction has been of interest for many years, because
of applications to a variety of microwave components, including
phase changers, matching transformers, and quarter-wave plates [1].
In these applications, the inhomogeneous loading is generally ac-
complished by partially filling the guide cross section with a dielectric
slab. There has also been some attention given to the more general
problem in which the permittivity variation is continuous over one
dimension of the guide cross section [2], [3]. In this short paper, we
consider this more general situation and present a method by which
the electromagnetic fields may be determined for a nearly arbitrary
variation of permittivity across the waveguide.

Consider a rectangular waveguide formed by conducting surfaces
at x=0and x=¢ and y=0 and y=b. The material filling the guide is
an inhomogeneous dielectric of permittivity e(x) and permeability uo.
Assuming a time dependence exp (jwt), the LSE modes are obtained
from

E =V X ®a, (1a)
_ 1
H=——V XV X &d. (1b)
Jora
where
Vg + B2 (x)® = 0 2)

with E2(x) =cw?ue(x). The elementary product solutions of (2) are
given by

®(x, ¥, ) = f(x) cos ?Z—y 182 @)

in which #=0, 1, 2, - - -, 8 is the propagation constant in the axial
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