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Fig. 4. Additional capacitance associated with the impedance step.

of lines of widths Ww and WN, respectively, and COI and COZ are the

capacitances per unit length of the infinite (two-dimensional) lines of
widths Ww and WN. Thetwoconjoining lines of lengths L create the
region investigated, which has a total capacitance C~(L).

In light of lengths l~and –l~calculated inthe previous section,

a corrected form of (6), accounting for the effects of inductance,
is now

AC=$:mm [C,(~,) -Coc(~) -Co,(2) -Co(~+zN) -Co2(~-zN)]. (7)

RESULTS

The equivalent lengths lV and ‘lIV, in normalized form, associ-
ated with a range of aspect ratios WN/Ww, are ehown in Fig, 3 for a

constant ratio of WN/H=l.0, Hbeing the strip-ground plane spac-
ing, which was taken to be 0.025 in. These results supply the neces-
sary information to establish a refereuce pIane for the junction.

The results of Fig. 3 were then applied to (7), giving thecorrec-
tions required of the capacitance values attained by Farrar and

‘ Adams, and these are given in Fig. 4, where their results can be seen
to concur well for only a limited aspect ratio.

Of particular interest is the outcome of the comparison of com-
puted results, in the case +=1.0, for both (6) and (7), which indi-
cates (within the numerical error limits) the dualities involved. This

case of an absence of dielectric can be accounted for by the effect of
series inductance or shunt susceptance on uniform transmission-line

behavior, andonewould suspect that the definition of an electrical
reference plane for the junction would correspondingly produce the
same answer. If, in the electrostatic case, the excess and deficiency
of charge or capacitance on either side of reference plane T-T had

been furnished, then for ,,=1.0, lengthsl~ and ‘lN could bedis-
cerned, and thus not only provide the reference plane required, but
also make available self-correcting measures for the final calculation

of capacitance, therefore producing a more representative equivalent,
In conclusion, extended information on the parameters associated

with an impedance step have been presented, accounting for both
inductance and capacitance, using static assumptions. Theinterpre-

tatioft of dualities has enabled comparisons to be made with other

theoretical work; these have proven to be extremely good. Further-
more, inferences may be drawn as to the complete adequacy of an

exclusively electrostatic approach in the present application.
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Discontinuity Capacitance of a Coaxial Line Terminated

in a Circular Waveguide: Part II—Lower Bound Solution

EDWARD W. RISLEY, JR.

Abstracf-Thk calculation provides a lower bound (complement-

ing the upper bound solution given earlier) to the discontinuity y

capacitance of a coaxial line terminated in a circular waveguide. A

50-Q 0.9525-cm (3/4-in) open-circuited coaxial termination with a

solid center conductor was fabricated with center- and outer-con-

ductor diameters of 0.82723 ~ 0.00005 and 1.90487 ~ 0.00005 cm

(1 cm= 0.393703 in), respectively. The measured value of capaci-
tance of this termination at 1000 Hz was 216.4+ 1.0 fF, as compared

with the calculated lower bound of 215.0 fF. (The upper bound for

this case was 217.7 fF.>

1. INTRODUCTION

The standard of reflection for a coaxial line is the quarter-wave

short-circuit termination. There are, however, shortcomings to this
standard: the fabrication cost is high and each termination is usable

at only one frequency. However, an open-circuited coaxial line with

an extended outer conductor and a solid inner conductor could be

used advantageously as a standard termination, because fabrication

can be made using commercially available components and because

the device is broad banded and losses are minimal. In addition to the

high-frequency application, the device can also be used at low fre-

quencies as a standard of capacitance.
In this short paper, the input impedance Z is formulated in terms

of the magnetic field which leads to a lower bound solution for the

discontinuity capacitance. Z is expressed as a stationary functional
with a definite integral operator, and can therefore be shown to be
bounded on the set of admissible trial functions [1].

This result complements the upper bound solution given in an
earlier paper [2].

II. INTEGRAL EQUATION FOR INPUT IMPEDANCE

To derive the stationary form for the input impedance, assume

an incident 1“ wave propagating in the direction of increasing z
(Fig. 1). Symmetry dictates that only E modes, independent of d,
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Coaxial line terminated in a circular waveguide.

bv the discontinuity at z =0. The modal e.wansions
for the &ansverse c~mponents of the-field in region I for O<~ <a are

.
Ii = ao(eik’ + Re–ikz)@O(p) -1- ~ wj~(p)e-ih~’ (1)

.=1
m

H, = ade’h” – Re-’’z)y@dP) – Z a.y.h(p)e-’h’: (2)
n-l

see [2 ] for a glossary of symbols, where the generalized Fourier

coefficients are

1
~. . __ ——_———

Jyk+(e’k’ – Re-’”) A,H’+” ‘A

eih,z
al = ——

s
H@, dA

yihiz A,

with @o(P) and c&(p) defined to be zero on [0, b].
Similarly, the transverse fields in region I I for O<p <a are

where

(3)

(4)

(5)

(6)

(7)

and it is assumed that all modes in this region are evanescent. To
insure that this condition is satisfied, it is sufficient that the wave-
length XI of the incident mode satisfies the inequality h > ZmZ/ UI,

where UI is the first zero of the equation .To(w’s) = O.
Replace the coefficients in (1) and (5) by their integral expressions

(3), (4), and (7); then

EH = – KIrHH (9)

where KI and KII are the integral operators:

2T a

ii”lHl =
Lf

k,(p, P’)HI(P’)P’ dpfdb (lo)
00

Zr .

K)IHH =
Lf

k,(p. P’)HH (P’)P’ dp’do
00

with kernels

(11)

m f7LJP)#dP’)
k,(p) p’) = ~ —–-—

n=1 ynllnt

which are separable, and therefore the integral
comtietelv continuous.

(12)

(13)

transformations are

Conti~uity of transverse E across z = O in .4 I requires

.zc#w(P)~ HI (P’)@o(P’) dA + f k, (P, P’)HI (P’) d.1
AZ A,

= - f k,(p,pt)H,,(p)dA, P ~ A, (1$

where

z_ (l+R)

y~kz(l – R) “

Equation (14) contains implicitly the vanishing of tangential E on As.
Since HI =HII on .41, (14) can be rewritten as

zdlo(P)
.r

OO(P’) HII (P’) U +
J

h(p, P’)HII (P’) dA
A2 AZ

.— sMP, P’)HII(P’) dA
A3

or

.z@II(P)(@O, ~H) + k~~n = O (15)

where

ICHn =
f

k(p, P’)Hn (P’) dA (16)
AZ

It follows from (15) that

Z(H, o,)’ + (H, KH) = O

or

(18)

where K is a definite symmetric operator, and hence (18) is a sta-
tionary form which is bounded.

II 1. REDUCTION OF THE VARIATIONAL EXPRESSION

Since (18) is exact only if His the actual field, expand H in the

complete set {4L(P) }:

H = ~ b:y,’it(p). (19)
,=1

Equation (18) plus stationarity leads to the system

~ b,y,’(ZfM2, + %) = O, k = 1,2, . ~ ., N. (20)
,-1

Equation (20) can be solved for Z to give

where, for example, the determinants in (21) for k =3 are

Q,l fl,t 01]

Ar+ = $221 an Q23

%1 G82 033

The determinant elements are defined in terms of the inner products

Q, = (@o,*J (22)

(23)
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Fig. 2. Convergence behavior of upper and lower bound solutions.

where

{
1, ~=fl=j

6 ,.1 =

o, otherwise.

IV. RESULTS

Equation (21) was evaluated using an electronic computer. A
SO-Q 0.9525-cm (3/4-in) open-circuited coaxial termination with a

solid center conductor was fabricated with center- and outer-con-

ductor diameters of 0.82723 ~0.00005 and 1.90487 ~0.00005 cm

(1 cm= 0.393701 in), respectively. The measured value of capacitance

of this termination at 1000 Hz was216.4il.OfF, as compared with

the calculated lower bound of 215.0 fF. [The upper bound for this

case was217.7fF (see 2).] The number of terms carried intheexpan-
sionsfor~ and k(p, p’) were eight and ten, respectively.

Fig. 2 is a plot of the calculated value of capacitance as a function
of the number of terms carried intheexpansion of the field [see (19)]
foraten-term expansion of thekernel [see (17)] .Alsodisplayed isthe
convergence behavior of the upper bound solution.

The error bounds provided by this method make it useable for
standards work. In other methods, error bounds must be inferred

from the convergence behavior of the solution. The minimum error

bounds determinable by this method mast wait until funds become

available. In theory, of course, this limit could be reduced to zero.

Somlo [3]obtained avalueof 216.8 fFusing a40-term expansion

of the series derived by Wliinnery et al. [4]. This value lies between

the upper and lower bounds obtained here.

V. NOMENCLATURE

E
H
R
aO

h.

km’

k

Y.

Y.’

yo
*n(P)
?.

A,, A,, .4, See Fig. 1.

Radial com~onent of transverse electric field.
Transverse ~omponent of magnetic field.
Reflection coefficient.
Amplitude of the incident wave in region I.

= ~k’–~~’ =ix~; an= dy~’–k’.

= ~k’ –T;’ =ie~’; a.’= dy.” –k’.—
=dw.

=coe/h~-wave admittance corresponding to the nth

mode in theregion Z<O.
=coc/hn’-wave admittance corresponding to the tzth
mode in the region 2>0.
Characteristic admittance.
Mode functionof thenth mode inacircular waveguide.
tith eigenvalue corresponding to the eigenfunction
%(p) (see I).

T.’

e

P

P

9

90 (P)

@n(P)

cd

nth eigenvalue corresponding to the eigenfunction V.
(see I).

Dielectric constant.
Polar coordinate.

Permeability.

Polar coordinate.

Mode function of the dominant mode in a coaxial line.
Mode function of the tith mode in a coaxial line.

= 2irfi f = frequency.

ACKNOWLEDGMENT

Theauthor wishes to thank Dr. A. D. Yaghjian and Dr. J. B.

Davies for their helpful suggestions and W. E. Little for providing

the experimental work.

REFERENCES

[1] D. M. Kerns, “Half-round inductive obstacles in rectangular waveguide. ” 1.
Res. iVat.13ur. .Sta?zd., vol. 64 B, pp. 113–130, Jan. 1960.

[2] E. W. Risley, Jr., “Discontinuity capacitance OfacOa~ial Iineterminated ina
circular waveguide, ” IEEE T?ans. Miwowave Theovy Tech., vol. MTT-17, PP.
86-92, Feb. 1969.

[3] P. I. Somlo, ‘:The discontinuity capacitance and the effective position of a
shielded open circuit inacoaxial line, ”P2’0c. lREE (Aus6wka),vol. 28, no. l, PP.
7-9, Jan. 1967.

[4] J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, “Coaxial-line discontinui-
ties, ”Proc. IRE, vol. 32, pp.695–709, Nov. 1944.

On Inhomogeneously Filled Rectangular Waveguides

K. F. CASEY

Absfracf—A method is given for determining the characteristic

equations and field components of the LSE and LSM modes in
rectangular waveguides filled with a dielectric which is inhomoge-

neous in one transverse dimension. The method is exact and yields

solutions for a nearly arbitrary variation in permittivity across the

waveguide.

Propagation in waveguides which are inhomogeneously filled in

the transverse direction has been of interest for many years, because

of applications to a variety of microwave components, including

phase changers, matching transformers, and quarter-wave plates [1].
[n these applications, the inhomogeneous loading is generally ac-
complished by partially filling the guide cross section with a dielectric
slab. There has also been some attention given to the more general
problem in which the permittivity variation is continuous over one

dimension of the guide cross section [2], [3]. In this short paper, we
consider this more general situation and present a method by which
the electromagnetic fields may be determined for a nearly arbitrary

variation of permittivity across the waveguide.

Consider a rectangular waveguide formed by conducting surfaces

at x = O and x =a and y = O and y = b. The material filling the guide is

an inhomogeneous dielectric of permittivity c($) and permeability IJO.

Assuming a time dependence exp (jut), the LSE modes are obtained

from

E=vx@iz (la)

1
77= —Vxvxwz

jwpO
(lb)

where

V%+ k2(x)@ = O (2)

with kz(x) = C02WX(x). The elementary product solutions of (2) are

given by

@(%, y, 2) = f(x) Cos ~;y @z (3)

in which n=O, 1, 2, . . . , @ is the propagation constant in the axial
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